時(shí)間:2023-01-19 07:09:09
緒論:在尋找寫(xiě)作靈感嗎?愛(ài)發(fā)表網(wǎng)為您精選了8篇光通信研究論文,愿這些內(nèi)容能夠啟迪您的思維,激發(fā)您的創(chuàng)作熱情,歡迎您的閱讀與分享!
筆者認(rèn)為,光纖通信技術(shù)尚有很大的發(fā)展空間,今后會(huì)有很大的需求和市場(chǎng)。主要是:光纖到家庭FTTH、光交換和集成光電子器件方面會(huì)有較大的發(fā)展。在此主要討論光纖通信的發(fā)展趨勢(shì)和市場(chǎng)。
光纖通信的發(fā)展趨勢(shì)
1、光纖到家庭(FTTH)的發(fā)展
FTTH可向用戶提供極豐富的帶寬,所以一直被認(rèn)為是理想的接入方式,對(duì)于實(shí)現(xiàn)信息社會(huì)有重要作用,還需要大規(guī)模推廣和建設(shè)。FTTH所需要的光纖可能是現(xiàn)有已敷光纖的2~3倍。過(guò)去由于FTTH成本高,缺少寬帶視頻業(yè)務(wù)和寬帶內(nèi)容等原因,使FTTH還未能提到日程上來(lái),只有少量的試驗(yàn)。近來(lái),由于光電子器件的進(jìn)步,光收發(fā)模塊和光纖的價(jià)格大大降低;加上寬帶內(nèi)容有所緩解,都加速了FTTH的實(shí)用化進(jìn)程。
發(fā)達(dá)國(guó)家對(duì)FTTH的看法不完全相同:美國(guó)AT&T認(rèn)為FTTH市場(chǎng)較小,在0F62003宣稱:FTTH在20-50年后才有市場(chǎng)。美國(guó)運(yùn)行商Verizon和Sprint比較積極,要在10—12年內(nèi)采用FTTH改造網(wǎng)絡(luò)。日本NTT發(fā)展FTTH最早,現(xiàn)在已經(jīng)有近200萬(wàn)用戶。目前中國(guó)FTTH處于試點(diǎn)階段。
FTTH[遇到的挑戰(zhàn):現(xiàn)在廣泛采用的ADSL技術(shù)提供寬帶業(yè)務(wù)尚有一定優(yōu)勢(shì)。與FTTH相比:①價(jià)格便宜②利用原有銅線網(wǎng)使工程建設(shè)簡(jiǎn)單③對(duì)于目前1Mbps—500kbps影視節(jié)目的傳輸可滿足需求。FTTH目前大量推廣受制約。
對(duì)于不久的將來(lái)要發(fā)展的寬帶業(yè)務(wù),如:網(wǎng)上教育,網(wǎng)上辦公,會(huì)議電視,網(wǎng)上游戲,遠(yuǎn)程診療等雙向業(yè)務(wù)和HDTV高清數(shù)字電視,上下行傳輸不對(duì)稱的業(yè)務(wù),AD8L就難以滿足。尤其是HDTV,經(jīng)過(guò)壓縮,目前其傳輸速率尚需19.2Mbps。正在用H.264技術(shù)開(kāi)發(fā),可壓縮到5~6Mbps。通常認(rèn)為對(duì)QOS有所保證的ADSL的最高傳輸速串是2Mbps,仍難以傳輸HDTV。可以認(rèn)為HDTV是FTTH的主要推動(dòng)力。即HDTV業(yè)務(wù)到來(lái)時(shí),非FTTH不可。
FTTH的解決方案:通常有P2P點(diǎn)對(duì)點(diǎn)和PON無(wú)源光網(wǎng)絡(luò)兩大類。
F2P方案一一優(yōu)點(diǎn):各用戶獨(dú)立傳輸,互不影響,體制變動(dòng)靈活;可以采用廉價(jià)的低速光電子模塊;傳輸距離長(zhǎng)。缺點(diǎn):為了減少用戶直接到局的光纖和管道,需要在用戶區(qū)安置1個(gè)匯總用戶的有源節(jié)點(diǎn)。
PON方案——優(yōu)點(diǎn):無(wú)源網(wǎng)絡(luò)維護(hù)簡(jiǎn)單;原則上可以節(jié)省光電子器件和光纖。缺點(diǎn):需要采用昂貴的高速光電子模塊;需要采用區(qū)分用戶距離不同的電子模塊,以避免各用戶上行信號(hào)互相沖突;傳輸距離受PON分比而縮短;各用戶的下行帶寬互相占用,如果用戶帶寬得不到保證時(shí),不單是要網(wǎng)絡(luò)擴(kuò)容,還需要更換PON和更換用戶模塊來(lái)解決。(按照目前市場(chǎng)價(jià)格,PEP比PON經(jīng)濟(jì))。
PON有多種,一般有如下幾種:(1)APON:即ATM-PON,適合ATM交換網(wǎng)絡(luò)。(2)BPON:即寬帶的PON。(3)OPON:采用通用幀處理的OFP-PON。(4)EPON:采用以太網(wǎng)技術(shù)的PON,0EPON是千兆畢以太網(wǎng)的PON。(5)WDM-PON:采用波分復(fù)用來(lái)區(qū)分用戶的PON,由于用戶與波長(zhǎng)有關(guān),使維護(hù)不便,在FTTH中很少采用。
發(fā)達(dá)國(guó)家發(fā)展FTTH的計(jì)劃和技術(shù)方案,根據(jù)各國(guó)具體情況有所不同。美國(guó)主要采用A-PON,因?yàn)锳TM交換在美國(guó)應(yīng)用廣泛。日本NTT有一個(gè)B-FLETts計(jì)劃,采用P2P-MC、B-PON、G-EPON、SCM-PON等多種技術(shù)。SCM-PON:是采用副載波調(diào)制作為多信道復(fù)用的PON。
中國(guó)ATM使用遠(yuǎn)比STM的SDH少,一般不考慮APON。我們可以考慮的是P2P、GPON和EPON。P2P方案的優(yōu)缺點(diǎn)前面已經(jīng)說(shuō)過(guò),目前比較經(jīng)濟(jì),使用靈活,傳輸距離遠(yuǎn)等;宜采用。而比較GPON和EPON,各有利弊。GPON:采用GFP技術(shù)網(wǎng)絡(luò)效率高;可以有電話,適合SDH網(wǎng)絡(luò),與IP結(jié)合沒(méi)有EPON好,但目前GPON技術(shù)不很成熟。EPON:與IP結(jié)合好,可用戶電話,如用電話需要借助lAD技術(shù)。目前,中國(guó)的FTTH試點(diǎn)采用EPON比較多。FTTH技術(shù)方案的采用,還需要根據(jù)用戶的具體情況不同而不同。
近來(lái),無(wú)線接入技術(shù)發(fā)展迅速。可用作WLAN的IEEE802.11g協(xié)議,傳輸帶寬可達(dá)54Mbps,覆蓋范圍達(dá)100米以上,目前已可商用。如果采用無(wú)線接入WLAN作用戶的數(shù)據(jù)傳輸,包括:上下行數(shù)據(jù)和點(diǎn)播電視VOD的上行數(shù)據(jù),對(duì)于一般用戶其上行不大,IEEES02.11g是可以滿足的。而采用光纖的FTTH主要是解決HDTV寬帶視頻的下行傳輸,當(dāng)然在需要時(shí)也可包含一些下行數(shù)據(jù)。這就形成“光纖到家庭+無(wú)線接入”(FTTH+無(wú)線接入)的家庭網(wǎng)絡(luò)。這種家庭網(wǎng)絡(luò),如果采用PON,就特別簡(jiǎn)單,因?yàn)榇薖ON無(wú)上行信號(hào),就不需要測(cè)距的電子模塊,成本大大降低,維護(hù)簡(jiǎn)單。如果,所屬PON的用戶群體,被無(wú)線城域網(wǎng)WiMAX(1EEE802.16)覆蓋而可利用,那么可不必建設(shè)專用的WLAN。接入網(wǎng)采用無(wú)線是趨勢(shì),但無(wú)線接入網(wǎng)仍需要密布于用戶臨近的光纖網(wǎng)來(lái)支撐,與FTTH相差無(wú)幾。FTTH+無(wú)線接入是未來(lái)的發(fā)展趨勢(shì)。
2、光交換的發(fā)展什么是通信?
實(shí)際上可表示為:通信輸+交換。
光纖只是解決傳輸問(wèn)題,還需要解決光的交換問(wèn)題。過(guò)去,通信網(wǎng)都是由金屬線纜構(gòu)成的,傳輸?shù)氖请娮有盘?hào),交換是采用電子交換機(jī)。現(xiàn)在,通信網(wǎng)除了用戶末端一小段外,都是光纖,傳輸?shù)氖枪庑盘?hào)。合理的方法應(yīng)該采用光交換。但目前,由于目前光開(kāi)關(guān)器件不成熟,只能采用的是“光-電-光”方式來(lái)解決光網(wǎng)的交換,即把光信號(hào)變成電信號(hào),用電子交換后,再變還光信號(hào)。顯然是不合理的辦法,是效串不高和不經(jīng)濟(jì)的。正在開(kāi)發(fā)大容量的光開(kāi)關(guān),以實(shí)現(xiàn)光交換網(wǎng)絡(luò),特別是所謂ASON-自動(dòng)交換光網(wǎng)絡(luò)。
通常在光網(wǎng)里傳輸?shù)男畔?一般速度都是xGbps的,電子開(kāi)關(guān)不能勝任。一般要在低次群中實(shí)現(xiàn)電子交換。而光交換可實(shí)現(xiàn)高速XGbDs的交換。當(dāng)然,也不是說(shuō),一切都要用光交換,特別是低速,顆粒小的信號(hào)的交換,應(yīng)采用成熟的電子交換,沒(méi)有必要采用不成熟的
大容量的光交換。當(dāng)前,在數(shù)據(jù)網(wǎng)中,信號(hào)以“包”的形式出現(xiàn),采用所謂“包交換”。包的顆粒比較小,可采用電子交換。然而,在大量同方向的包匯總后,數(shù)量很大時(shí),就應(yīng)該采用容量大的光交換。目前,少通道大容量的光交換已有實(shí)用。如用于保護(hù)、下路和小量通路調(diào)度等。一般采用機(jī)械光開(kāi)關(guān)、熱光開(kāi)關(guān)來(lái)實(shí)現(xiàn)。目前,由于這些光開(kāi)關(guān)的體積、功耗和集成度的限制,通路數(shù)一般在8—16個(gè)。
電子交換一般有“空分”和“時(shí)分”方式。在光交換中有“空分”、“時(shí)分”和“波長(zhǎng)交換”。光纖通信很少采用光時(shí)分交換。
光空分交換:一般采用光開(kāi)關(guān)可以把光信號(hào)從某一光纖轉(zhuǎn)到另一光纖。空分的光開(kāi)關(guān)有機(jī)械的、半導(dǎo)體的和熱光開(kāi)關(guān)等。近來(lái),采用集成技術(shù),開(kāi)發(fā)出MEM微電機(jī)光開(kāi)關(guān),其體積小到mm。已開(kāi)發(fā)出1296x1296MEM光交換機(jī)(Lucent),屬于試驗(yàn)性質(zhì)的。
光波長(zhǎng)交換:是對(duì)各交換對(duì)象賦于1個(gè)特定的波長(zhǎng)。于是,發(fā)送某1特定波長(zhǎng)就可對(duì)某特定對(duì)象通信。實(shí)現(xiàn)光波長(zhǎng)交換的關(guān)鍵是需要開(kāi)發(fā)實(shí)用化的可變波長(zhǎng)的光源,光濾波器和集成的低功耗的可靠的光開(kāi)關(guān)陣列等。已開(kāi)發(fā)出640x640半導(dǎo)體光開(kāi)關(guān)+AWG的空分與波長(zhǎng)的相結(jié)合的交叉連接試驗(yàn)系統(tǒng)(corning)。采用光空分和光波分可構(gòu)成非常靈活的光交換網(wǎng)。日本NTT在Chitose市進(jìn)行了采用波長(zhǎng)路由交換的現(xiàn)場(chǎng)試驗(yàn),半徑5公里,共有43個(gè)終端節(jié),(試用5個(gè)節(jié)點(diǎn)),速率為2.5Gbps。
自動(dòng)交換的光網(wǎng),稱為ASON,是進(jìn)一步發(fā)展的方向。
3、集成光電子器件的發(fā)展
如同電子器件那樣,光電子器件也要走向集成化。雖然不是所有的光電子器件都要集成,但會(huì)有相當(dāng)?shù)囊徊糠质切枰沂强梢约傻摹D壳罢诎l(fā)展的PLC-平面光波導(dǎo)線路,如同一塊印刷電路板,可以把光電子器件組裝于其上,也可以直接集成為一個(gè)光電子器件。要實(shí)現(xiàn)FTTH也好,ASON也好,都需要有新的、體積小的和廉價(jià)的和集成的光電子器件。
日本NTT采用PLO技術(shù)研制出16x16熱光開(kāi)關(guān);1x128熱光開(kāi)關(guān)陣列;用集成和混合集成工藝把32通路的AWG+可變光衰減器+光功率監(jiān)測(cè)集成在一起;8波長(zhǎng)每波速串為80Gbps的WDM的復(fù)用和去復(fù)用分別集成在1塊芯片上,尺寸僅15x7mm,如圖1。NTT采用以上集成器件構(gòu)成32通路的OADM。其中有些已經(jīng)商用。近幾年,集成光電子器件有比較大的改進(jìn)。
中國(guó)的集成光電子器件也有一定進(jìn)展。集成的小通道光開(kāi)關(guān)和屬于PLO技術(shù)的AWG有所突破。但與發(fā)達(dá)國(guó)家尚有較大差距。如果我們不迎頭趕上,就會(huì)重復(fù)如同微電子落后的被動(dòng)局面。
光纖通信的市場(chǎng)
眾所周知,2000年IT行業(yè)泡沫,使光纖通信產(chǎn)業(yè)生產(chǎn)規(guī)模爆炸性地發(fā)展,產(chǎn)品生產(chǎn)過(guò)剩。無(wú)論是光傳輸設(shè)備,光電子器件和光纖的價(jià)格都狂跌。特別是光纖,每公里泡沫時(shí)期價(jià)格為羊1200,現(xiàn)在價(jià)格Y100左右1公里,比銅線還便宜。光纖通信的市場(chǎng)何時(shí)能恢復(fù)?根據(jù)RHK的對(duì)北美通信產(chǎn)業(yè)投入的統(tǒng)計(jì)和預(yù)測(cè),如圖2.在2002年是最低谷,相當(dāng)于倒退4年。現(xiàn)在有所回升,但還不能恢復(fù)。按此推測(cè),在2007-2008年才能復(fù)元。光纖通信的市場(chǎng)也隨IT市場(chǎng)好轉(zhuǎn)。這些好轉(zhuǎn),在相當(dāng)大的程度是由FTTH和寬帶數(shù)字電視所帶動(dòng)的。
關(guān)鍵詞:光波分復(fù)用(WDM);光載波;光纖
一、光波分復(fù)用(WDM)技術(shù)
光波分復(fù)用(WavelengthDivisionMultiplexing,WDM)技術(shù)是在一根光纖中同時(shí)同時(shí)多個(gè)波長(zhǎng)的光載波信號(hào),而每個(gè)光載波可以通過(guò)FDM或TDM方式,各自承載多路模擬或多路數(shù)字信號(hào)。其基本原理是在發(fā)送端將不同波長(zhǎng)的光信號(hào)組合起來(lái)(復(fù)用),并耦合到光纜線路上的同一根光纖中進(jìn)行傳輸,在接收端又將這些組合在一起的不同波長(zhǎng)的信號(hào)分開(kāi)(解復(fù)用),并作進(jìn)一步處理,恢復(fù)出原信號(hào)后送入不同的終端。因此將此項(xiàng)技術(shù)稱為光波長(zhǎng)分割復(fù)用,簡(jiǎn)稱光波分復(fù)用技術(shù)。
WDM技術(shù)對(duì)網(wǎng)絡(luò)的擴(kuò)容升級(jí),發(fā)展寬帶業(yè)務(wù),挖掘光纖帶寬能力,實(shí)現(xiàn)超高速通信等均具有十分重要的意義,尤其是加上摻鉺光纖放大器(EDFA)的WDM對(duì)現(xiàn)代信息網(wǎng)絡(luò)更具有強(qiáng)大的吸引力。
二、WDM系統(tǒng)的基本構(gòu)成
WDM系統(tǒng)的基本構(gòu)成主要分雙纖單向傳輸和單纖雙向傳輸兩種方式。單向WDM是指所有光通路同時(shí)在一根光纖上沿同一方向傳送,在發(fā)送端將載有各種信息的具有不同波長(zhǎng)的已調(diào)光信號(hào)通過(guò)光延長(zhǎng)用器組合在一起,并在一根光纖中單向傳輸,由于各信號(hào)是通過(guò)不同波長(zhǎng)的光攜帶的,所以彼此間不會(huì)混淆,在接收端通過(guò)光的復(fù)用器將不同波長(zhǎng)的光信號(hào)分開(kāi),完成多路光信號(hào)的傳輸,而反方向則通過(guò)另一根光纖傳送。雙向WDM是指光通路在一要光纖上同時(shí)向兩個(gè)不同的方向傳輸,所用的波長(zhǎng)相互分開(kāi),以實(shí)現(xiàn)彼此雙方全雙工的通信聯(lián)絡(luò)。目前單向的WDM系統(tǒng)在開(kāi)發(fā)和應(yīng)用方面都比較廣泛,而雙向WDM由于在設(shè)計(jì)和應(yīng)用時(shí)受各通道干擾、光反射影響、雙向通路間的隔離和串話等因素的影響,目前實(shí)際應(yīng)用較少。
三、雙纖單向WDM系統(tǒng)的組成
以雙纖單向WDM系統(tǒng)為例,一般而言,WDM系統(tǒng)主要由以下5部分組成:光發(fā)射機(jī)、光中繼放大器、光接收機(jī)、光監(jiān)控信道和網(wǎng)絡(luò)管理系統(tǒng)。
1.光發(fā)射機(jī)
光發(fā)射機(jī)是WDM系統(tǒng)的核心,除了對(duì)WDM系統(tǒng)中發(fā)射激光器的中心波長(zhǎng)有特殊的要求外,還應(yīng)根據(jù)WDM系統(tǒng)的不同應(yīng)用(主要是傳輸光纖的類型和傳輸距離)來(lái)選擇具有一定色度色散容量的發(fā)射機(jī)。在發(fā)送端首先將來(lái)自終端設(shè)備輸出的光信號(hào)利用光轉(zhuǎn)發(fā)器把非特定波長(zhǎng)的光信號(hào)轉(zhuǎn)換成具有穩(wěn)定的特定波長(zhǎng)的信號(hào),再利用合波器合成多通路光信號(hào),通過(guò)光功率放大器(BA)放大輸出。
2.光中繼放大器
經(jīng)過(guò)長(zhǎng)距離(80~120km)光纖傳輸后,需要對(duì)光信號(hào)進(jìn)行光中繼放大,目前使用的光放大器多數(shù)為摻鉺光纖光放大器(EDFA)。在WDM系統(tǒng)中必須采用增益平坦技術(shù),使EDFA對(duì)不同波長(zhǎng)的光信號(hào)具有相同的放大增益,并保證光信道的增益競(jìng)爭(zhēng)不影響傳輸性能。
3.光接收機(jī)
在接收端,光前置放大器(PA)放大經(jīng)傳輸而衰減的主信道信號(hào),采用分波器從主信道光信號(hào)中分出特定波長(zhǎng)的光信道,接收機(jī)不但要滿足對(duì)光信號(hào)靈敏度、過(guò)載功率等參數(shù)的要求,還要能承受一定光噪聲的信號(hào),要有足夠的電帶寬性能。
4.光監(jiān)控信道
光監(jiān)控信道的主要功能是監(jiān)控系統(tǒng)內(nèi)各信道的傳輸情況。在發(fā)送端插入本節(jié)點(diǎn)產(chǎn)生的波長(zhǎng)為λs(1550nm)的光監(jiān)控信號(hào),與主信道的光信號(hào)合波輸出。在接收端,將接收到的光信號(hào)分波,分別輸出λs(1550nm)波長(zhǎng)的光監(jiān)控信號(hào)和業(yè)務(wù)信道光信號(hào)。幀同步字節(jié)、公務(wù)字節(jié)和網(wǎng)管使用的開(kāi)銷字節(jié)都是通過(guò)光監(jiān)控信道來(lái)傳遞的。
5.網(wǎng)絡(luò)管理系統(tǒng)
網(wǎng)絡(luò)管理系統(tǒng)通過(guò)光監(jiān)控信道傳送開(kāi)銷字節(jié)到其他節(jié)點(diǎn)或接收來(lái)自其他節(jié)點(diǎn)的開(kāi)銷字節(jié)對(duì)WDM系統(tǒng)進(jìn)行管理,實(shí)現(xiàn)配置管理、故障管理、性能管理、安全管理等功能。
四、光波分復(fù)用器和解復(fù)用器
在整個(gè)WDM系統(tǒng)中,光波分復(fù)用器和解復(fù)用器是WDM技術(shù)中的關(guān)鍵部件,其性能的優(yōu)劣對(duì)系統(tǒng)的傳輸質(zhì)量具有決定性作用。將不同光源波長(zhǎng)的信號(hào)結(jié)合在一起經(jīng)一根傳輸光纖輸出的器件稱為復(fù)用器;反之,將同一傳輸光纖送來(lái)的多波長(zhǎng)信號(hào)分解為個(gè)別波長(zhǎng)分別輸出的器件稱為解復(fù)用器。從原理上說(shuō),該器件是互易(雙向可逆)的,即只要將解復(fù)用器的輸出端和輸入端反過(guò)來(lái)使用,就是復(fù)用器。光波分復(fù)用器性能指標(biāo)主要有接入損耗和串?dāng)_,要求損耗及頻偏要小,接入損耗要小于1.0~2.5db,信道間的串?dāng)_小,隔離度大,不同波長(zhǎng)信號(hào)間影響小。在目前實(shí)際應(yīng)用的WDM系統(tǒng)中,主要有光柵型光波分復(fù)用器和介質(zhì)膜濾波器型光波分復(fù)用器。
1.光柵型光波分復(fù)用器
閃耀光柵是在一塊能夠透射或反射的平面上刻劃平等且等距的槽痕,其刻槽具有小階梯似的形狀。當(dāng)含有多波長(zhǎng)的光信號(hào)通過(guò)光柵產(chǎn)生衍射時(shí),不同波長(zhǎng)成分的光信號(hào)將以不同的角度射出。當(dāng)光纖中的光信號(hào)經(jīng)透鏡以平行光束射向閃耀光柵時(shí),由于光柵的衍射作用,不同波長(zhǎng)的光信號(hào)以方向略有差異的各種平行光返回透鏡傳輸,再經(jīng)透鏡聚焦后,以一定規(guī)律分別注入輸出光纖,從而將不同波長(zhǎng)的光信號(hào)分別以不同的光纖傳輸,達(dá)到解復(fù)用的目的。根據(jù)互易原理,將光波分復(fù)用輸入和輸出互換即可達(dá)到復(fù)用的目的。
2.介質(zhì)膜濾波器型光波分復(fù)用器
目前WDM系統(tǒng)工作在1550nm波長(zhǎng)區(qū)段內(nèi),用8,16或更多個(gè)波長(zhǎng),在一對(duì)光纖上(也可用單光纖)構(gòu)成光通信系統(tǒng)。其波長(zhǎng)與光纖損耗的關(guān)系見(jiàn)圖4。每個(gè)波長(zhǎng)之間為1.6nm、0.8nm或更窄的間隔,對(duì)應(yīng)200GHz、100GHz或更窄的帶寬。
五、WDM技術(shù)的主要特點(diǎn)
1.充分利用光纖的巨大帶寬資源,使一根光纖的傳輸容量比單波長(zhǎng)傳輸增加幾倍到幾十倍,從而增加光纖的傳輸容量,降低成本,具有很大的應(yīng)用價(jià)值和經(jīng)濟(jì)價(jià)值。
2.由于WDM技術(shù)中使用的各波長(zhǎng)相互獨(dú)立,因而可以傳輸特性完全不同的信號(hào),完成各種信號(hào)的綜合和分離,實(shí)現(xiàn)多媒體信號(hào)混合傳輸。
3.由于許多通信都采用全雙式方式,因此采用WDM技術(shù)可節(jié)省大量線路投資。
4.根據(jù)需要,WDM技術(shù)可以有很多應(yīng)用形式,如長(zhǎng)途干線網(wǎng)、廣播式分配網(wǎng)絡(luò),多路多地局域網(wǎng)等,因此對(duì)網(wǎng)絡(luò)應(yīng)用十分重要。
[關(guān)鍵詞]光纖通信核心網(wǎng)接入網(wǎng)光孤子通信全光網(wǎng)絡(luò)
近年來(lái),光纖通信技術(shù)得到了長(zhǎng)足的發(fā)展,新技術(shù)不斷涌現(xiàn),這大幅提高了通信能力,并使光纖通信的應(yīng)用范圍不斷擴(kuò)大。
一、我國(guó)光纖光纜發(fā)展的現(xiàn)狀
1.普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統(tǒng)的發(fā)展,光中繼距離和單一波長(zhǎng)信道容量增大,G..652.A光纖的性能還有可能進(jìn)一步優(yōu)化,表現(xiàn)在1550rim區(qū)的低衰減系數(shù)沒(méi)有得到充分的利用和光纖的最低衰減系數(shù)和零色散點(diǎn)不在同一區(qū)域。符合ITUTG.654規(guī)定的截止波長(zhǎng)位移單模光纖和符合G..653規(guī)定的色散位移單模光纖實(shí)現(xiàn)了這樣的改進(jìn)。
2.核心網(wǎng)光纜
我國(guó)已在干線(包括國(guó)家干線、省內(nèi)干線和區(qū)內(nèi)干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G..652光纖和G..655光纖。G..653光纖雖然在我國(guó)曾經(jīng)采用過(guò),但今后不會(huì)再發(fā)展。G..654光纖因其不能很大幅度地增加光纖系統(tǒng)容量,它在我國(guó)的陸地光纜中沒(méi)有使用過(guò)。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經(jīng)使用過(guò)的緊套層絞式和骨架式結(jié)構(gòu),目前已停止使用。
3.接入網(wǎng)光纜
接入網(wǎng)中的光纜距離短,分支多,分插頻繁,為了增加網(wǎng)的容量,通常是增加光纖芯數(shù)。特別是在市內(nèi)管道中,由于管道內(nèi)徑有限,在增加光纖芯數(shù)的同時(shí)增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網(wǎng)使用G..652普通單模光纖和G..652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復(fù)用,目前在我國(guó)已有少量的使用。
4.室內(nèi)光纜
室內(nèi)光纜往往需要同時(shí)用于話音、數(shù)據(jù)和視頻信號(hào)的傳輸。并且還可能用于遙測(cè)與傳感器。國(guó)際電工委員會(huì)(IEC)在光纜分類中所指的室內(nèi)光纜,筆者認(rèn)為至少應(yīng)包括局內(nèi)光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機(jī)房?jī)?nèi),布放緊密有序和位置相對(duì)固定。結(jié)合布線光纜布放在用戶端的室內(nèi),主要由用戶使用,因此對(duì)其易損性應(yīng)比局用光纜有更嚴(yán)格的考慮。
5.電力線路中的通信光纜
光纖是介電質(zhì),光纜也可作成全介質(zhì),完全無(wú)金屬。這樣的全介質(zhì)光纜將是電力系統(tǒng)最理想的通信線路。用于電力線桿路敷設(shè)的全介質(zhì)光纜有兩種結(jié)構(gòu):即全介質(zhì)自承式(ADSS)結(jié)構(gòu)和用于架空地線上的纏繞式結(jié)構(gòu)。ADSS光纜因其可以單獨(dú)布放,適應(yīng)范圍廣,在當(dāng)前我國(guó)電力輸電系統(tǒng)改造中得到了廣泛的應(yīng)用。ADSS光纜在國(guó)內(nèi)的近期需求量較大,是目前的一種熱門(mén)產(chǎn)品。
二、光纖通信技術(shù)的發(fā)展趨勢(shì)
對(duì)光纖通信而言,超高速度、超大容量和超長(zhǎng)距離傳輸一直是人們追求的目標(biāo),而全光網(wǎng)絡(luò)也是人們不懈追求的夢(mèng)想。
1.超大容量、超長(zhǎng)距離傳輸技術(shù)波分復(fù)用技術(shù)極大地提高了光纖傳輸系統(tǒng)的傳輸容量,在未來(lái)跨海光傳輸系統(tǒng)中有廣闊的應(yīng)用前景。近年來(lái)波分復(fù)用系統(tǒng)發(fā)展迅猛,目前1.6Tbit/的WDM系統(tǒng)已經(jīng)大量商用,同時(shí)全光傳輸距離也在大幅擴(kuò)展。提高傳輸容量的另一種途徑是采用光時(shí)分復(fù)用(OTDM)技術(shù),與WDM通過(guò)增加單根光纖中傳輸?shù)男诺罃?shù)來(lái)提高其傳輸容量不同,OTDM技術(shù)是通過(guò)提高單信道速率來(lái)提高傳輸容量,其實(shí)現(xiàn)的單信道最高速率達(dá)640Gbit/s。
僅靠OTDM和WDM來(lái)提高光通信系統(tǒng)的容量畢竟有限,可以把多個(gè)OTDM信號(hào)進(jìn)行波分復(fù)用,從而大幅提高傳輸容量。偏振復(fù)用(PDM)技術(shù)可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號(hào)在超高速通信系統(tǒng)中占空較小,降低了對(duì)色散管理分布的要求,且RZ編碼方式對(duì)光纖的非線性和偏振模色散(PMD)的適應(yīng)能力較強(qiáng),因此現(xiàn)在的超大容量WDM/OTDM通信系統(tǒng)基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統(tǒng)需要解決的關(guān)鍵技術(shù)基本上都包括在OTDM和WDM通信系統(tǒng)的關(guān)鍵技術(shù)中。
2.光孤子通信。光孤子是一種特殊的ps數(shù)量級(jí)的超短光脈沖,由于它在光纖的反常色散區(qū),群速度色散和非線性效應(yīng)相互平衡,因而經(jīng)過(guò)光纖長(zhǎng)距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實(shí)現(xiàn)長(zhǎng)距離無(wú)畸變的通信,在零誤碼的情況下信息傳遞可達(dá)萬(wàn)里之遙。
光孤子技術(shù)未來(lái)的前景是:在傳輸速度方面采用超長(zhǎng)距離的高速通信,時(shí)域和頻域的超短脈沖控制技術(shù)以及超短脈沖的產(chǎn)生和應(yīng)用技術(shù)使現(xiàn)行速率10-20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時(shí)、整形、再生技術(shù)和減少ASE,光學(xué)濾波使傳輸距離提高到100000km以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當(dāng)然實(shí)際的光孤子通信仍然存在許多技術(shù)難題,但目前已取得的突破性進(jìn)展使人們相信,光孤子通信在超長(zhǎng)距離、高速、大容量的全光通信中,尤其在海底光通信系統(tǒng)中,有著光明的發(fā)展前景。
3.全光網(wǎng)絡(luò)。未來(lái)的高速通信網(wǎng)將是全光網(wǎng)。全光網(wǎng)是光纖通信技術(shù)發(fā)展的最高階段,也是理想階段。傳統(tǒng)的光網(wǎng)絡(luò)實(shí)現(xiàn)了節(jié)點(diǎn)間的全光化,但在網(wǎng)絡(luò)結(jié)點(diǎn)處仍采用電器件,限制了目前通信網(wǎng)干線總?cè)萘康倪M(jìn)一步提高,因此真正的全光網(wǎng)已成為一個(gè)非常重要的課題。
全光網(wǎng)絡(luò)以光節(jié)點(diǎn)代替電節(jié)點(diǎn),節(jié)點(diǎn)之間也是全光化,信息始終以光的形式進(jìn)行傳輸與交換,交換機(jī)對(duì)用戶信息的處理不再按比特進(jìn)行,而是根據(jù)其波長(zhǎng)來(lái)決定路由。
目前,全光網(wǎng)絡(luò)的發(fā)展仍處于初期階段,但它已顯示出了良好的發(fā)展前景。從發(fā)展趨勢(shì)上看,形成一個(gè)真正的、以WDM技術(shù)與光交換技術(shù)為主的光網(wǎng)絡(luò)層,建立純粹的全光網(wǎng)絡(luò),消除電光瓶頸已成為未來(lái)光通信發(fā)展的必然趨勢(shì),更是未來(lái)信息網(wǎng)絡(luò)的核心,也是通信技術(shù)發(fā)展的最高級(jí)別,更是理想級(jí)別。
三、結(jié)語(yǔ)
光通信技術(shù)作為信息技術(shù)的重要支撐平臺(tái),在未來(lái)信息社會(huì)中將起到重要作用,雖然經(jīng)歷了全球光通信的“冬天”,但今后光通信市場(chǎng)仍然將呈現(xiàn)上升趨勢(shì)。從現(xiàn)代通信的發(fā)展趨勢(shì)來(lái)看,光纖通信也將成為未來(lái)通信發(fā)展的主流。人們期望的真正的全光網(wǎng)絡(luò)的時(shí)代也會(huì)在不遠(yuǎn)的將來(lái)到來(lái)。
參考文獻(xiàn):
[1]辛化梅,李忠.論光纖通信技術(shù)的現(xiàn)狀及發(fā)展[J].山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,(04).
論文摘要:介紹了一種在玻璃基板上切割V型槽并對(duì)V型槽纖芯距進(jìn)行高精度測(cè)量的光纖偏振光干涉儀,該系統(tǒng)包括光源、偏振器、偏振控制器、波片、自聚焦透鏡和探測(cè)器組成,并對(duì)這種光纖傳感器原理進(jìn)行分析。其理論上其測(cè)量精度可達(dá)到0.01nm,很好地解決了實(shí)際生產(chǎn)中高精度的非接觸在線檢測(cè),并滿足了光通信行業(yè)對(duì)V型槽纖芯距的實(shí)際要求。
引言
在光通信纖維陣列用玻璃基板上刻高精度V型槽(通用型槽間距即纖芯距為127±0.5um和250±0.5um)的關(guān)鍵技術(shù)被日韓等少數(shù)國(guó)家壟斷,國(guó)內(nèi)使用的光纖陣列用V型槽基板均需要依靠進(jìn)口,價(jià)格昂貴,嚴(yán)重制約了我國(guó)光纖到戶(FTTH)工程的進(jìn)程。而光通信纖維陣列用V型槽基板是光纖到戶工程中必不可少的光器件,主要用于對(duì)光纖精確定位生產(chǎn)各種銜接光纖干線與家用光纖之間的信號(hào)傳輸?shù)墓馄骷?/p>
日本在光通信纖維陣列用V型槽基板的加工設(shè)備開(kāi)發(fā)上起步較早,也具有較為成熟的技術(shù)方案。目前,日本等國(guó)家生產(chǎn)光通信纖維陣列用V型基板全部采用高精度的專用切割機(jī),而此類設(shè)備日本等發(fā)達(dá)國(guó)家對(duì)我國(guó)實(shí)施禁運(yùn),國(guó)內(nèi)部分企業(yè)與機(jī)構(gòu)也曾嘗試對(duì)此方面進(jìn)行研究,皆因?yàn)榧夹g(shù)難度較高,而最終以失敗告終,因此在國(guó)內(nèi)尚屬于空白。
在先進(jìn)的生產(chǎn)制造過(guò)程中,非接觸的在線檢測(cè)發(fā)揮著越來(lái)越重要的作用。在線檢測(cè)的對(duì)象在被測(cè)過(guò)程中是不斷變化著的,因此對(duì)檢測(cè)傳感器不僅要求其精度高、穩(wěn)定可靠、有良好的動(dòng)態(tài)性能、能對(duì)快速信號(hào)實(shí)時(shí)響應(yīng)監(jiān)控,而且一般要非接觸式測(cè)量,并便于安裝。
本文提出一種新型的光纖偏振光干涉儀,它將偏振光干涉技術(shù)和光纖傳感技術(shù)相結(jié)合,能對(duì)玻璃基板V型槽的纖芯距進(jìn)行高精度的在線檢測(cè)的非接觸測(cè)量。
1、實(shí)驗(yàn)原理設(shè)計(jì)
即
該線偏振光 的偏振方向與x軸夾角為 。
(1)
被測(cè)物位移變化一個(gè)波長(zhǎng)則合成光的偏振方向轉(zhuǎn)動(dòng)了角。因此,通過(guò)檢測(cè)出偏振方向角,即可得到位移。所以,可將干涉儀的位移測(cè)量精度,由一般檢測(cè)干涉條紋的位相細(xì)分轉(zhuǎn)變?yōu)闄z測(cè)偏振光的偏振方向角的角度細(xì)分;而檢測(cè)角度細(xì)分要比檢測(cè)位相細(xì)分精度高,從而可得到較高的測(cè)量精度。
由式(1) 可得位移的變化量。如,當(dāng)角度檢測(cè)精度時(shí),則可測(cè)得位移精度;而當(dāng) 時(shí),則 ,因此光纖偏振光干涉儀可以具有很高的靈敏度和精度。
2、 測(cè)量實(shí)例及結(jié)果
轉(zhuǎn)貼于
本項(xiàng)目結(jié)合光學(xué)精密測(cè)量技術(shù)實(shí)現(xiàn)通用切割機(jī)主軸的精確定位,通過(guò)設(shè)計(jì)穩(wěn)定的工作平臺(tái),選用硬度合適的刀具,選擇最佳的切削參數(shù),完成V形槽的亞微米超精密機(jī)械加工,盡可能減少由于機(jī)械方面引起的切割誤差。
實(shí)際切割原理如圖2所示,在實(shí)際中,算機(jī)通過(guò)控制偏振角度 的值來(lái)控制刀移動(dòng)的位置來(lái)實(shí)行對(duì)玻璃基板上對(duì)V槽纖芯距的切割。實(shí)際切割的產(chǎn)品如圖3所示。該圖是8通道纖芯距為250um的V型槽的放大圖。
如圖4是計(jì)算機(jī)顯示屏顯示的控制情況。從圖可以看出,該系統(tǒng)可以很好地監(jiān)控實(shí)際加工情況。
3、 結(jié)論
本項(xiàng)目開(kāi)發(fā)出具有獨(dú)立知識(shí)產(chǎn)權(quán)的基于邁克爾遜干涉儀實(shí)時(shí)測(cè)量監(jiān)控系統(tǒng)。該系統(tǒng)已經(jīng)用于玻璃基板V型槽加工的實(shí)時(shí)檢測(cè)中,有效地保證的光通信用玻璃基板V型槽的精度要求,并在國(guó)內(nèi)率先批量生產(chǎn)出高良率的光纖通信用玻璃基板V型槽,有利于推動(dòng)我國(guó)光纖到戶工程。
參考文獻(xiàn)
[1]胡永明. 全保偏光纖邁克爾遜干涉儀[J]。中國(guó)激光,1997 ,24 (10) :892 - 894
【關(guān)鍵詞】 快速傅里葉變換 Matlab 時(shí)頻域分析
一、引言
與普通光源相比,可見(jiàn)光LED有能量損耗低、高亮度、高可靠性和壽命長(zhǎng)等許多優(yōu)點(diǎn),可見(jiàn)光LED還因其高速調(diào)制特性已被應(yīng)用在可見(jiàn)光通信中(visible light communication,VLC),相比于射頻無(wú)線通信技術(shù),VLC技術(shù)有無(wú)需申請(qǐng)頻帶、無(wú)電磁干擾、發(fā)射功率高、安全性好和造價(jià)低等優(yōu)點(diǎn)。
目前VLC技術(shù)已成為國(guó)內(nèi)外研究的熱點(diǎn),研究過(guò)程中,對(duì)可見(jiàn)光通信信號(hào)的研究與分析是必不可少的。信號(hào)的分析分為時(shí)域分析和頻域分析兩個(gè)方面。時(shí)域分析是以時(shí)間為自變量描述物理量的變化的過(guò)程,是信號(hào)最基本、最直觀的表達(dá)形式,也是真實(shí)世界惟一實(shí)際存在的域,因而在時(shí)域上對(duì)信號(hào)進(jìn)行分析必不可少。頻域分析的目的是把復(fù)雜的時(shí)間歷程波形,經(jīng)過(guò)傅里葉變換分解為若干單一的諧波分量來(lái)研究,得到動(dòng)態(tài)信號(hào)中的各個(gè)頻率成分和頻率分布范圍,求出各個(gè)頻率成分的幅值分布和能量分布,從而給出主要幅度和能量分布的頻率值,進(jìn)而可以對(duì)信號(hào)的信息作定量解釋。本文主要研究可見(jiàn)光通信信號(hào)的時(shí)域和頻域分析算法及硬件實(shí)現(xiàn),并對(duì)所設(shè)計(jì)的信號(hào)分析儀進(jìn)行實(shí)驗(yàn)和仿真對(duì)比。
二、信號(hào)分析儀的設(shè)計(jì)
LED是單色光源,不能產(chǎn)生包含所有可見(jiàn)光譜的白色光。現(xiàn)在普遍使用的白色LED利用藍(lán)光LED激發(fā)熒光粉形成白光。
分析儀采用脈沖形式的波形作為傳輸信號(hào),用脈沖重復(fù)周期為250ns,脈沖寬度為20ns的信號(hào)進(jìn)行時(shí)域脈沖響應(yīng)分析時(shí),接收端的的脈沖寬度為77ns。經(jīng)過(guò)VLC信道后,脈沖被展寬非常明顯。
考慮到經(jīng)過(guò)VLC信道后脈沖被展寬,會(huì)在信號(hào)速率很高時(shí)產(chǎn)生碼間干擾等因素,對(duì)可見(jiàn)光通信信號(hào)分析儀設(shè)定了參數(shù)指標(biāo)要求:支持測(cè)試波段:380nm~780nm,支持VLC信號(hào)頻率:0Hz~200KHz,數(shù)據(jù)分析刷新速度≥1次/s.
三、快速傅里葉變換
設(shè)定被采樣信號(hào)的頻率為10KHz、占空比為50%的方波信號(hào),為了不失真地恢復(fù)模擬信號(hào),由香農(nóng)采樣定理可知,采樣頻率需大于信號(hào)頻率的兩倍,設(shè)定信號(hào)分析儀的采樣率為45KHz。
信號(hào)頻率和采樣頻率關(guān)系式為:Fn=(n-1)*Fs/N
其中Fn為某點(diǎn)n的頻率,F(xiàn)s為采樣頻率,N為采樣點(diǎn)數(shù)。為了保證精度并使得計(jì)算方便,設(shè)定每次采樣的采樣點(diǎn)數(shù)為1024。
在進(jìn)行時(shí)域分析時(shí),采樣1024個(gè)點(diǎn),采樣值存到數(shù)據(jù)類型為int型、長(zhǎng)度為1024的AD_Buffer[]數(shù)組中,計(jì)算1024個(gè)點(diǎn)的平均值作為時(shí)域顯示的觸發(fā)電平(AD_Level)。同時(shí)滿足下面三個(gè)條件的點(diǎn)i作為觸發(fā)點(diǎn):
板載液晶屏為800*480的分辨率,進(jìn)行橫屏顯示時(shí),由于像素點(diǎn)個(gè)數(shù)的限制,在液晶屏上顯示從點(diǎn)i開(kāi)始的連續(xù)635個(gè)像素點(diǎn)組成的波形圖。
進(jìn)行頻域分析時(shí),首先對(duì)1024個(gè)采樣點(diǎn)進(jìn)行快速傅里葉變換,然后把各頻率點(diǎn)所對(duì)應(yīng)的模值存儲(chǔ)到數(shù)組中。用635個(gè)像素點(diǎn)對(duì)1024個(gè)采樣點(diǎn)進(jìn)行頻域顯示,為了更為直觀的顯示信號(hào)的頻譜特性,采用柱形圖的方式進(jìn)行顯示。這里設(shè)S為每個(gè)數(shù)據(jù)顯示占用的像素個(gè)數(shù),L為可用像素點(diǎn)數(shù),為635個(gè),需要顯示的頻譜個(gè)數(shù)D=S/L,那么:Output[j]=
其中Output[j]為得到的要顯示的幅值,j,P為需要求平均的個(gè)數(shù),P=H/D。快速傅立葉變換結(jié)果具有對(duì)稱性,只需使用前半部分的變換結(jié)果,也就是小于采樣頻率一半的結(jié)果,取H=512。Output值的柱狀顯示即為信號(hào)的頻域顯示。
四、仿真和實(shí)驗(yàn)
被采樣信號(hào)是頻率為10KHz、占空比為50%的方波信號(hào)。通過(guò)可見(jiàn)光通信信號(hào)分析儀對(duì)信號(hào)進(jìn)行采樣,并通過(guò)串口調(diào)試助手傳輸采樣數(shù)據(jù)到matlab,順序取1024個(gè)數(shù)據(jù)中的300個(gè)繪制成時(shí)域波形圖,如圖1所示。
圖1中信號(hào)時(shí)域顯示的數(shù)據(jù)來(lái)自于可見(jiàn)光通信信號(hào)分析儀,在可見(jiàn)光通信信號(hào)分析儀上的時(shí)域圖形和matlab所繪制的是一致的。
調(diào)用matlab中的快速傅里葉變換函數(shù)對(duì)串口調(diào)試助手傳輸?shù)?024個(gè)數(shù)據(jù)做FFT變換,變換結(jié)果如圖2所示。理論上10KHz方波的FFT變換的頻率分布應(yīng)該只有10KHz、30KHz、50KHz等譜線,由于頻譜混疊現(xiàn)象的存在,圖2中出現(xiàn)頻率為5KHz、15KHz、25KHz等譜線。實(shí)驗(yàn)的采樣率為45KHz,10KHz方波信號(hào)的3次諧波頻率為30KHz,5次諧波頻率為50KHz,由奈奎斯特定理可知,采樣頻率必須為信號(hào)最高頻率的兩倍以上,否則會(huì)出現(xiàn)頻譜混疊現(xiàn)象,而理論上,方波的諧波次數(shù)是無(wú)限的,這里考慮到該實(shí)驗(yàn)只是作為驗(yàn)證性實(shí)驗(yàn),目的是和可見(jiàn)光通信信號(hào)分析儀的頻譜顯示做對(duì)比,所以暫不考慮諧波的影響。
利用串口調(diào)試助手,直接將通過(guò)可見(jiàn)光通信信號(hào)分析儀進(jìn)行FFT變換后的1024個(gè)數(shù)據(jù)在matlab上進(jìn)行繪圖顯示,考慮到液晶屏的像素點(diǎn)有限,為了清晰顯示FFT變化的結(jié)果,在可見(jiàn)光通信信號(hào)分析儀上對(duì)采樣信號(hào)經(jīng)過(guò)FFT變化后的幅值做了*處理,如圖3所示。與圖2比較可以看到,可見(jiàn)光通信信號(hào)分析儀的頻域信號(hào)顯示和matlab仿真結(jié)果基本一致,略有差異是由于stm32f407的數(shù)據(jù)處理精度和matlab的處理精度不一致造成。
五、結(jié)論
通過(guò)上述分析,可以看出采用本文提出的算法能夠?qū)崿F(xiàn)可見(jiàn)光信號(hào)的時(shí)域和頻域分析,在對(duì)可見(jiàn)光信號(hào)進(jìn)行直觀顯示的同時(shí)還可以做信息的定量分析,而且該算法對(duì)硬件要求不高,易于實(shí)現(xiàn),有利于在小型集成設(shè)備上實(shí)現(xiàn)可見(jiàn)光信號(hào)的時(shí)頻域分析和顯示,方便可見(jiàn)光通信的研究。
參 考 文 獻(xiàn)
[1]NAKAMURA S Present performance of InGaN based blue/green/yellow LEDs 1997(04)
信息通信技術(shù)的發(fā)展和移動(dòng)互聯(lián)網(wǎng)的快速普及,使得包括筆記本電腦、智能手機(jī)和平板電腦等終端使用呈現(xiàn)爆炸式的增長(zhǎng)。根據(jù)工信部電信研究院的《移動(dòng)終端白皮書(shū)2012》,2011年全國(guó)移動(dòng)智能終端出貨量超過(guò)1.1億部,超過(guò)了2011年之前中國(guó)移動(dòng)智能終端出貨量的總和。而目前包括智能手機(jī)和平板電腦等在內(nèi)的移動(dòng)互聯(lián)網(wǎng)終端的全球年出貨量已經(jīng)遠(yuǎn)超過(guò)傳統(tǒng)的PC出貨量[1]。根據(jù)全球權(quán)威的技術(shù)研究和咨詢公司Gartner最新預(yù)測(cè),2014年全球IT終端設(shè)備(個(gè)人電腦、平板電腦和智能手機(jī))出貨量預(yù)計(jì)將超過(guò)25億臺(tái),與2013年相比,增長(zhǎng)7.6%[2]。移動(dòng)互聯(lián)網(wǎng)的應(yīng)用已經(jīng)滲透到社會(huì)生活的各個(gè)領(lǐng)域,人們無(wú)時(shí)不刻地需要保持網(wǎng)絡(luò)連接,這與乘坐飛機(jī)旅行中不能使用各種移動(dòng)終端之間產(chǎn)生了極大的矛盾,對(duì)此國(guó)內(nèi)外學(xué)術(shù)界和工業(yè)界都給予了高度的關(guān)注,文獻(xiàn)[3]提出了一種面向衛(wèi)星網(wǎng)絡(luò)的主動(dòng)重傳擴(kuò)頻時(shí)隙ALOHA多址接入控制方法。目前已有多家航空公司嘗試在飛機(jī)上安裝機(jī)載衛(wèi)星寬帶通信系統(tǒng),并開(kāi)始試點(diǎn)基于機(jī)載衛(wèi)星通信系統(tǒng)向乘客提供無(wú)線接入的測(cè)試和試運(yùn)營(yíng)的工作,國(guó)內(nèi)民航公司也已經(jīng)開(kāi)始計(jì)劃利用衛(wèi)星通信技術(shù),為客艙提供寬帶通信服務(wù),解決飛行中的信息孤島問(wèn)題[4]。傳統(tǒng)上而言,在飛機(jī)飛行的全程中都不允許使用各類電子設(shè)備、特別是包括帶有無(wú)線和射頻等功能模塊的手機(jī)、平板電腦和筆記本電腦等。飛機(jī)起降期間是飛行中事故最易發(fā)的時(shí)間段,此時(shí)如果手機(jī)或電腦嘗試登錄或連接地面無(wú)線網(wǎng)絡(luò),會(huì)發(fā)射較強(qiáng)的無(wú)線信號(hào),可能超出了航空環(huán)境的輻射信號(hào)安全允許范圍,繼而對(duì)飛機(jī)上的通信、導(dǎo)航和飛行控制等電子設(shè)備造成影響和干擾。即使在機(jī)艙內(nèi)建立一個(gè)小型無(wú)線網(wǎng)絡(luò),降低地面無(wú)線網(wǎng)絡(luò)的影響,但現(xiàn)行的法律法規(guī)仍然嚴(yán)格限定在飛機(jī)起飛和降落時(shí)不允許使用各類電子設(shè)備,只有在平飛階段旅客才可使用機(jī)載無(wú)線網(wǎng)絡(luò),盡可能地減小對(duì)飛行安全的影響。另一方面,已經(jīng)提出的機(jī)載無(wú)線網(wǎng)絡(luò)解決方案僅支持筆記本電腦和平板電腦等配置了無(wú)線局域網(wǎng)(WLAN)的終端設(shè)備,依然不能使用手機(jī)等傳統(tǒng)的移動(dòng)通信終端。對(duì)于經(jīng)常搭乘飛機(jī)出行的商務(wù)乘客而言,他們對(duì)于機(jī)票價(jià)格的敏感性比較低,但是對(duì)于航班途中能夠提供的服務(wù)敏感性比較高。特別對(duì)于搭載國(guó)際和長(zhǎng)途航班的商務(wù)乘客而言,在數(shù)小時(shí)乃至十幾個(gè)小時(shí)航程的航班上無(wú)法與外界溝通,可能造成非常大的直接和間接經(jīng)濟(jì)損失。如果能夠在飛行中提供通信和網(wǎng)絡(luò)服務(wù),即使增加一定的成本,但與長(zhǎng)時(shí)間失去外界聯(lián)系造成的損失相比仍是可以接受的。顯然,對(duì)于商務(wù)乘客而言會(huì)傾向于優(yōu)先選擇可以提供地空互聯(lián)的航班。而對(duì)于航空公司而言,提供額外的通信和網(wǎng)絡(luò)服務(wù)也會(huì)給其帶來(lái)附加的收入或通過(guò)降低航班票價(jià)的折扣比例獲得收入增加,而飛機(jī)制造商和維護(hù)廠商也能從設(shè)備采購(gòu)、安裝和維護(hù)等環(huán)節(jié)中獲得收益。不難看出,提供機(jī)載通信和網(wǎng)絡(luò)服務(wù)對(duì)于整個(gè)產(chǎn)業(yè)鏈都具有顯著的正面影響,在飛機(jī)上安裝地空互聯(lián)和機(jī)載無(wú)線接入系統(tǒng)將是未來(lái)航空產(chǎn)業(yè)發(fā)展的一個(gè)主要趨勢(shì),結(jié)合拓?fù)淇刂萍夹g(shù)和功率控制技術(shù),采用定向天線代替全向天線的通訊機(jī)制有效地緩解了無(wú)線骨干網(wǎng)絡(luò)的信號(hào)干擾問(wèn)題。[5]目前已經(jīng)提出的機(jī)載無(wú)線網(wǎng)絡(luò)的主要實(shí)現(xiàn)方式是首先由飛機(jī)通過(guò)衛(wèi)星轉(zhuǎn)接后與地面主站實(shí)現(xiàn)通信,飛機(jī)機(jī)艙內(nèi)建立無(wú)線局域網(wǎng)(WLAN),并使機(jī)上乘客通過(guò)WLAN接入機(jī)艙局域網(wǎng)。這種方案的主要缺點(diǎn)是WLAN使用的多為2.4GHz~5GHz的電磁波段,頻譜資源非常有限,對(duì)于乘客密集的飛機(jī)機(jī)艙應(yīng)用場(chǎng)景而言,較多用戶同時(shí)使用網(wǎng)絡(luò)的帶寬很難保證;同時(shí)該頻段還有包括藍(lán)牙等其他短距無(wú)線網(wǎng)絡(luò)的干擾。考慮到飛機(jī)上空間非常有限,大量各類通信、控制和傳感等電子裝置及其線纜密集地集中在較小的布線空間內(nèi),而增加WLAN接入點(diǎn)及網(wǎng)絡(luò)布線無(wú)疑會(huì)遇到許多困難,更重要的是WLAN的無(wú)線信號(hào)也可能對(duì)一些電磁干擾敏感的電子設(shè)備造成影響,機(jī)艙的電子環(huán)境發(fā)生變化使得飛機(jī)制造商和航空公司不得不投入巨資重新考慮機(jī)上的電磁兼容問(wèn)題。可見(jiàn)光通信(VLC)技術(shù)是利用發(fā)光二極管(LED)等發(fā)出的肉眼覺(jué)察不到的高速明暗閃爍信號(hào)來(lái)傳輸信息的,即將需要傳輸?shù)臄?shù)據(jù)調(diào)制在LED發(fā)出的光并進(jìn)行傳輸,利用光電轉(zhuǎn)換器件接收光載波信號(hào)并解調(diào)以獲取信息。可見(jiàn)光通信系統(tǒng)的網(wǎng)絡(luò)覆蓋范圍就是燈光所能達(dá)到的范圍,不需要電線或其他的連接。與WLAN技術(shù)相比,可見(jiàn)光通信系統(tǒng)利用照明設(shè)備代替WLAN中的基站或熱點(diǎn),采用MIMO-OFDM技術(shù)其傳輸容量可達(dá)數(shù)Gbit/s。[6]可見(jiàn)光通信同時(shí)實(shí)現(xiàn)了照明和通信,將其引入機(jī)載無(wú)線通信網(wǎng)絡(luò)時(shí)可以直接利用原有的機(jī)艙中的閱讀燈,無(wú)需增加復(fù)雜的網(wǎng)絡(luò)布線和熱點(diǎn)等設(shè)施,從而實(shí)現(xiàn)低成本的機(jī)艙內(nèi)無(wú)線網(wǎng)絡(luò),不僅對(duì)飛行安全而且實(shí)現(xiàn)了綠色環(huán)保。本文針對(duì)基于VLC的機(jī)艙無(wú)線網(wǎng)絡(luò)的信道和布局進(jìn)行了研究,論文第二節(jié)給出了VLC系統(tǒng)原理及關(guān)鍵技術(shù),第三節(jié)是機(jī)艙內(nèi)VLC系統(tǒng)的布局模型研究和性能分析。
2VLC系統(tǒng)原理和關(guān)鍵技術(shù)
人們使用的照明光源已經(jīng)歷經(jīng)了白熾燈、節(jié)能燈和LED三代,其中白光LED因其能耗低、壽命長(zhǎng)、尺寸小、亮度高等特點(diǎn)迅速占領(lǐng)了市場(chǎng),得到人們的廣泛認(rèn)可,成為理想的照明光源。正是因?yàn)長(zhǎng)ED照明燈將在未來(lái)普及,人們想到在LED燈泡照明的同時(shí),將信息加載到燈光上,而通信所使用的較高調(diào)制頻率人眼無(wú)法察覺(jué),從而在照明的同時(shí)實(shí)現(xiàn)網(wǎng)絡(luò)通信。可見(jiàn)光作為信息傳輸介質(zhì)與傳統(tǒng)的射頻及無(wú)線通信方式相比,有著諸多優(yōu)勢(shì),其中最主要的就是可見(jiàn)光通信不需要復(fù)雜的電磁波頻譜分配,可以作為現(xiàn)有射頻無(wú)線通信的補(bǔ)充,極大地?cái)U(kuò)展通信所使用的電磁波頻譜范圍。傳統(tǒng)的射頻和無(wú)線通信技術(shù)最大的一個(gè)缺點(diǎn)是需要對(duì)所使用的電磁波頻譜進(jìn)行仔細(xì)劃分和規(guī)劃,特別是使用較多的射頻和微波頻段,可以使用頻譜資源非常有限。同時(shí),射頻和無(wú)線通信的空中接口是開(kāi)放的,存在難以完全解決的安全問(wèn)題。而可見(jiàn)光通信使用的頻率約在400~800THz(波長(zhǎng)約為375~780nm),其信道的使用是完全免費(fèi)的,不需要購(gòu)買(mǎi)或授權(quán)使用許可。在信息安全方面,可見(jiàn)光通信也有其獨(dú)特的優(yōu)勢(shì),可見(jiàn)光傳輸是視距(LOS)模式,只要信道被遮擋信號(hào)就會(huì)中斷,減小了信息被竊取的機(jī)會(huì)。同時(shí),可見(jiàn)光通信還具有高度的安全性,不會(huì)涉及如射頻和無(wú)線信號(hào)可能存在的對(duì)人體健康產(chǎn)生的影響或傷害。基于LED的可見(jiàn)光通信最早由日本的中川研究室于20世紀(jì)初提出,國(guó)內(nèi)在2006前后開(kāi)始跟蹤相關(guān)的研究進(jìn)展,并對(duì)可見(jiàn)光通信的系統(tǒng)結(jié)構(gòu)和關(guān)鍵技術(shù)進(jìn)行了初步研究[7]-[9];文獻(xiàn)[10]提出了一種基于光碼分多址(OCDMA)的可見(jiàn)光通信的無(wú)線局域網(wǎng)系統(tǒng)設(shè)計(jì)方案;文獻(xiàn)[11]和[12]提出了一種基于USB接口的室內(nèi)可見(jiàn)光無(wú)線接入電路;文獻(xiàn)[13]和[14]分別就如何削弱VLC系統(tǒng)中多徑串?dāng)_和背景光噪聲的影響,以及室內(nèi)光照度的分布等進(jìn)行了研究。可見(jiàn)光通信作為一種新型的無(wú)線通信方式,在一些特殊情形下有著突出的優(yōu)勢(shì),例如一些對(duì)于電磁干涉敏感的環(huán)境如醫(yī)院和航空器等,一個(gè)典型的可見(jiàn)光通信系統(tǒng)的組成框圖如圖1所示。如圖可知,一個(gè)典型的VLC系統(tǒng)主要包括光源與驅(qū)動(dòng)、光檢測(cè)與放大、調(diào)制與解調(diào)、信號(hào)處理等部分組成。可見(jiàn)光通信系統(tǒng)利用LED光源發(fā)出的光信號(hào)傳遞信息,現(xiàn)階段的白光LED相比于白熾燈具有極好的響應(yīng)性能(白熾燈響應(yīng)時(shí)間為毫秒級(jí),LED響應(yīng)時(shí)間為納秒級(jí)),且LED電光轉(zhuǎn)化效率高(接近100%),非常適合高頻電信號(hào)的調(diào)制。使用RGB-LED可以滿足比傳統(tǒng)白光LED更加多元的需求,當(dāng)需要用到某一波段的燈光時(shí),RGB的混色可以隨心所欲[15]。可見(jiàn)光通信系統(tǒng)中最基本的調(diào)制方式是幅移鍵控(ASK),隨著對(duì)系統(tǒng)容量需求的不斷提升,也開(kāi)始逐步引入包括正交頻分復(fù)用(OFDM)等先進(jìn)的調(diào)制方案。調(diào)制后的光載波信號(hào)直接在大氣中傳輸,因此需要考慮信道中可能的外部影響。對(duì)于室外和室內(nèi)使用的VLC系統(tǒng)而言,干擾源及其影響不盡相同。例如對(duì)于室外VLC應(yīng)用場(chǎng)景,主要的干擾源是太陽(yáng)光等自然光的強(qiáng)背景輻射噪聲,而在室內(nèi)環(huán)境中,則是各種照明光源帶來(lái)的干擾。對(duì)于特定的應(yīng)用場(chǎng)景而言,兩種干擾可能會(huì)同時(shí)存在。例如對(duì)于基于VLC技術(shù)的機(jī)艙通信系統(tǒng)而言,機(jī)艙照明燈和窗戶照進(jìn)來(lái)的陽(yáng)光會(huì)對(duì)VLC信號(hào)同時(shí)產(chǎn)生影響。另一方面,對(duì)于無(wú)線信道的傳輸通常需要考到多徑效應(yīng)等影響,但是對(duì)于機(jī)艙閱讀燈等特定應(yīng)用場(chǎng)景而言,由于其照射范圍比較集中,受鄰座閱讀燈干擾很小,可以只考慮直射光信號(hào)。經(jīng)過(guò)信道傳輸后,VLC系統(tǒng)接收端通過(guò)光檢測(cè)器(如光電二極管PD)來(lái)檢測(cè)光信號(hào),把光信號(hào)轉(zhuǎn)換成電信號(hào)后經(jīng)過(guò)解調(diào)還原處原始信息。對(duì)于VLC系統(tǒng)而言,一般需要在為了保證接收到足夠的光信號(hào),VLC系統(tǒng)一般在PD前配置了透鏡用以對(duì)接收到的光功率進(jìn)行聚焦。特別是對(duì)于室內(nèi)VLC應(yīng)用環(huán)境,由于PD有效檢測(cè)面積很小,接收到的光信號(hào)較弱,考慮到相鄰光源可能的干擾,用透鏡,把光信號(hào)會(huì)聚到PD上,可以有效增加PD接收到的光信號(hào)強(qiáng)度,并且減小相鄰信號(hào)的干擾。PD將光信號(hào)轉(zhuǎn)成電信號(hào)后,需要經(jīng)過(guò)信號(hào)放大、濾波整形、定時(shí)再生后、解調(diào)后可恢復(fù)出原始信號(hào)。
3基于VLC的機(jī)載無(wú)線通信系統(tǒng)
3.1系統(tǒng)模型和基本參數(shù)由于基于VLC的機(jī)載通信系統(tǒng)應(yīng)用的基本前提是不對(duì)已有的飛機(jī)機(jī)艙格局進(jìn)行改變,因此我們通過(guò)對(duì)典型民用客機(jī)的機(jī)艙環(huán)境進(jìn)行調(diào)研和資料查閱,初步構(gòu)建了基于乘客獨(dú)立閱讀燈的通信+照明合一的VLC系統(tǒng)模型。以民用航空中使用最普及的波音系列客機(jī)座椅作為參照進(jìn)行系統(tǒng)建模,一般情況下認(rèn)為前排座椅背面放下的小桌板為乘客理想的工作平面,而小桌板的尺寸為400×2402mm。因此,只要滿足在這個(gè)平面區(qū)域內(nèi)照明和通信即可。圖2和表1分別給出了機(jī)艙座椅模型和主要參數(shù)。如果不考慮外部遮擋,當(dāng)光源位于工作平面的正上方時(shí),該模型為最佳模型,此時(shí)光源到小桌板的垂直距離為850mm。但是基于VLC的機(jī)載通信系統(tǒng)中一個(gè)重要的問(wèn)題是必須考慮到遮擋效應(yīng),即當(dāng)前排乘客放倒座椅時(shí),此時(shí)座椅角度會(huì)增大至傾斜約38°(初始傾斜角度為15°)。此時(shí)若VLC光源仍位于工作平面正上方,則將會(huì)有一部分區(qū)域?yàn)檎彰魍ㄐ抨幱啊R虼诵枰獙⒐庠次恢盟胶笠埔欢ň嚯x,保證工作區(qū)域始終處于照明條件下。通過(guò)計(jì)算得到完全無(wú)遮擋的并且光源距離工作平面中心最近的水平距離為544mm,光源的發(fā)射角約為11.5°,如圖3所示。
3.2性能分析
基于VLC的機(jī)載無(wú)線通信系統(tǒng)的基本要求,是所使用的LED光源的光照強(qiáng)度滿足相關(guān)的機(jī)艙照明標(biāo)準(zhǔn),針對(duì)我們?cè)O(shè)計(jì)構(gòu)建的機(jī)艙VLC通信系統(tǒng)模型,根據(jù)HB6491-91《飛機(jī)內(nèi)部照明設(shè)備通用要求》,并參考《飛機(jī)設(shè)計(jì)手冊(cè)》的相關(guān)章節(jié),其有效照度的指標(biāo)要求光照度應(yīng)達(dá)到300~500lx之間[17]。由此可見(jiàn),點(diǎn)光源在面元ds上所產(chǎn)生的光照度與光源的發(fā)光強(qiáng)度I成正比,與距離的平方成反比,并且與面元相對(duì)于光束的傾角θ有關(guān),這個(gè)即為點(diǎn)光源光照度的距離平方反比定律。由于白光LED是一種非相干光源,不會(huì)形成光的干涉現(xiàn)象,因此多個(gè)LED構(gòu)成陣列時(shí)遵循疊加原理,即總的光照度1NiiEE???,其中iE為每個(gè)LED的光照度,N代表總LED燈的個(gè)數(shù)。結(jié)合現(xiàn)有機(jī)載照明燈的尺寸和文獻(xiàn)中一般采用的LED陣列,本文使用的模型中為光功率1W,中心發(fā)光強(qiáng)度為55cd的LED芯片。當(dāng)光源距離工作平面中心554mm時(shí),采取3?3的陣列模式,等效發(fā)光面積大小為60×602mm。當(dāng)光源位于工作平面中心正上方時(shí),采取3?2的陣列模式,等效發(fā)光面積大小為60×362mm。根據(jù)以上建立的模型,可以計(jì)算得出機(jī)載VLC系統(tǒng)中接收平面(小桌板)處的光照度分布以及最值。當(dāng)光源距離工作平面中心554mm(如圖5a所示)時(shí),與光源位于工作平面中心正上方(如圖5b所示)相比,工作平面靠近乘客的一端有更大光照度。另一方面,由機(jī)閱讀燈照明范圍一般只覆蓋到每位乘客小桌板范圍,不會(huì)影響到其他乘客,所以這里我們只考慮光線直射情況。從圖中我們可以看出,該光源模式下,靠近光源的小桌板一側(cè)會(huì)出現(xiàn)光照度最大值,小桌板的兩側(cè)會(huì)出現(xiàn)光照度最小值,這符合飛機(jī)閱讀燈只給單個(gè)乘客提供照明而又不影響其他乘客的要求,也保證了來(lái)自相鄰座位的通信干擾相對(duì)較低。圖6給出了中心光源對(duì)相鄰座位的影響,只有中心光源照明時(shí),相鄰座位接收到的光照度不足300lx,并且可以通過(guò)調(diào)整接收機(jī)的接收角,以達(dá)到完全屏蔽來(lái)自相鄰座位光源的信號(hào)。同時(shí)小桌板中心區(qū)域照明度滿足國(guó)際標(biāo)準(zhǔn)(ISO)提出的工作照明300-500lx的要求。圖7給出了本文提出模型的工作平面處接收光功率計(jì)算結(jié)果,可以看出在工作平面內(nèi),光線入射角處于光探測(cè)器接收范圍內(nèi)。與圖5給出的光照度分布圖對(duì)比可以發(fā)現(xiàn),光電探測(cè)器的接收功率分布大致類似于光照度分布,但相對(duì)于光照度分布值相對(duì)陡峭,這是由于接收角的存在,LED陣列正下方的光線很容易進(jìn)入探測(cè)器的接受范圍之內(nèi),而邊緣的光線因?yàn)榻邮战堑脑蜉^難進(jìn)入探測(cè)器接收范圍之內(nèi)。
4結(jié)束語(yǔ)
[論文摘要]光纖通信因其具有的損耗低、傳輸頻帶寬、容量大、體積小、重量輕、抗電磁干擾、不易串音等優(yōu)點(diǎn),備受業(yè)內(nèi)人士青睞,發(fā)展非常迅速。目前,光纖光纜已經(jīng)進(jìn)入了有線通信的各個(gè)領(lǐng)域,包括郵電通信、廣播通信、電力通信和軍用通信等領(lǐng)域。綜述我國(guó)光纖通信研究現(xiàn)狀及其發(fā)展。
近年來(lái),光纖通信技術(shù)得到了長(zhǎng)足的發(fā)展,新技術(shù)不斷涌現(xiàn),這大幅提高了通信能力,并使光纖通信的應(yīng)用范圍
不斷擴(kuò)大。
一、我國(guó)光纖光纜發(fā)展的現(xiàn)狀
(一)普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統(tǒng)的發(fā)展,光中繼距離和單一波長(zhǎng)信道容量增大,G.652.A光纖的性能還有可能進(jìn)一步優(yōu)化,表現(xiàn)在1550rim區(qū)的低衰減系數(shù)沒(méi)有得到充分的利用和光纖的最低衰減系數(shù)和零色散點(diǎn)不在同一區(qū)域。符合ITUTG.654 規(guī)定的截止波長(zhǎng)位移單模光纖和符合G.653 規(guī)定的色散位移單模光纖實(shí)現(xiàn)了這樣的改進(jìn)。
(二)核心網(wǎng)光纜
我國(guó)已在干線(包括國(guó)家干線、省內(nèi)干線和區(qū)內(nèi)干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G.652光纖和G.655光纖。G.653光纖雖然在我國(guó)曾經(jīng)采用過(guò),但今后不會(huì)再發(fā)展。G.654光纖因其不能很大幅度地增加光纖系統(tǒng)容量,它在我國(guó)的陸地光纜中沒(méi)有使用過(guò)。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經(jīng)使用過(guò)的緊套層絞式和骨架式結(jié)構(gòu),目前已停止使用。
(三)接入網(wǎng)光纜
接入網(wǎng)中的光纜距離短,分支多,分插頻繁,為了增加網(wǎng)的容量,通常是增加光纖芯數(shù)。特別是在市內(nèi)管道中,由于管道內(nèi)徑有限,在增加光纖芯數(shù)的同時(shí)增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網(wǎng)使用G.652普通單模光纖和G.652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復(fù)用,目前在我國(guó)已有少量的使用。
(四)室內(nèi)光纜
室內(nèi)光纜往往需要同時(shí)用于話音、 數(shù)據(jù)和視頻信號(hào)的傳輸。并目還可能用于遙測(cè)與傳感器。國(guó)際電工委員會(huì)(IEC)在光纜分類中所指的室內(nèi)光纜,筆者認(rèn)為至少應(yīng)包括局內(nèi)光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機(jī)房?jī)?nèi),布放緊密有序和位置相對(duì)固定。綜合布線光纜布放在用戶端的室內(nèi),主要由用戶使用,因此對(duì)其易損性應(yīng)比局用光纜有更嚴(yán)格的考慮。
(五)電力線路中的通信光纜
光纖是介電質(zhì),光纜也可作成全介質(zhì),完全無(wú)金屬。這樣的全介質(zhì)光纜將是電力系統(tǒng)最理想的通信線路。用于電力線桿路敷設(shè)的全介質(zhì)光纜有兩種結(jié)構(gòu):即全介質(zhì)自承式(ADSS)結(jié)構(gòu)和用于架空地線上的纏繞式結(jié)構(gòu)。ADSS光纜因其可以單獨(dú)布放,適應(yīng)范圍廣,在當(dāng)前我國(guó)電力輸電系統(tǒng)改造中得到了廣泛的應(yīng)用。ADSS光纜在國(guó)內(nèi)的近期需求量較大,是目前的一種熱門(mén)產(chǎn)品。
二、光纖通信技術(shù)的發(fā)展趨勢(shì)
對(duì)光纖通信而言,超高速度、超大容量和超長(zhǎng)距離傳輸一直是人們追求的目標(biāo),而全光網(wǎng)絡(luò)也是人們不懈追求的夢(mèng)想。
(一)超大容量、超長(zhǎng)距離傳輸技術(shù)波分復(fù)用技術(shù)極大地提高了光纖傳輸系統(tǒng)的傳輸容量,在未來(lái)跨海光傳輸系統(tǒng)中有廣闊的應(yīng)用前景。近年來(lái)波分復(fù)用系統(tǒng)發(fā)展迅猛,目前1.6 Tbit/的 WDM系統(tǒng)已經(jīng)大量商用,同時(shí)全光傳輸距離也在大幅擴(kuò)展。提高傳輸容量的另一種途徑是采用光時(shí)分復(fù)用(OTDM)技術(shù),與 WDM通過(guò)增加單根光纖中傳輸?shù)男诺罃?shù)來(lái)提高其傳輸容量不同,OTDM技術(shù)是通過(guò)提高單信道速率來(lái)提高傳輸容量,其實(shí)現(xiàn)的單信道最高速率達(dá)640Gbit/s。
僅靠OTDM和WDM來(lái)提高光通信系統(tǒng)的容量畢竟有限,可以把多個(gè)OTDM信號(hào)進(jìn)行波分復(fù)用,從而大幅提高傳輸容量。偏振復(fù)用(PDM)技術(shù)可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號(hào)在超高速通信系統(tǒng)中占空較小,降低了對(duì)色散管理分布的要求,且RZ編碼方式對(duì)光纖的非線性和偏振模色散(PMD)的適應(yīng)能力較強(qiáng),因此現(xiàn)在的超大容量WDM/OTDM通信系統(tǒng)基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統(tǒng)需要解決的關(guān)鍵技術(shù)基本上都包括在OTDM和WDM通信系統(tǒng)的關(guān)鍵技術(shù)中。
(二)光孤子通信。光孤子是一種特殊的ps數(shù)量級(jí)的超短光脈沖,由于它在光纖的反常色散區(qū),群速度色散和非線性效應(yīng)相互平衡,因而經(jīng)過(guò)光纖長(zhǎng)距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實(shí)現(xiàn)長(zhǎng)距離無(wú)畸變的通信,在零誤碼的情況下信息傳遞可達(dá)萬(wàn)里之遙。
光孤子技術(shù)未來(lái)的前景是:在傳輸速度方面采用超長(zhǎng)距離的高速通信,時(shí)域和頻域的超短脈沖控制技術(shù)以及超短脈沖的產(chǎn)生和應(yīng)用技術(shù)使現(xiàn)行速率10~20Gbit/s提高到100 Gbit/s以上;在增大傳輸距離方面采用重定時(shí)、整形、再生技術(shù)和減少ASE,光學(xué)濾波使傳輸距離提高到100000km以上;在高性能 EDFA 方面是獲得低噪聲高輸出EDFA。當(dāng)然實(shí)際的光孤子通信仍然存在許多技術(shù)難題,但目前已取得的突破性進(jìn)展使人們相信,光孤子通信在超長(zhǎng)距離、高速、大容量的全光通信中,尤其在海底光通信系統(tǒng)中,有著光明的發(fā)展前景。
(三)全光網(wǎng)絡(luò)。未來(lái)的高速通信網(wǎng)將是全光網(wǎng)。全光網(wǎng)是光纖通信技術(shù)發(fā)展的最高階段,也是理想階段。傳統(tǒng)的光網(wǎng)絡(luò)實(shí)現(xiàn)了節(jié)點(diǎn)間的全光化,但在網(wǎng)絡(luò)結(jié)點(diǎn)處仍采用電器件,限制了目前通信網(wǎng)干線總?cè)萘康倪M(jìn)一步提高,因此真正的全光網(wǎng)已成為一個(gè)非常重要的課題。
全光網(wǎng)絡(luò)以光節(jié)點(diǎn)代替電節(jié)點(diǎn),節(jié)點(diǎn)之間也是全光化,信息始終以光的形式進(jìn)行傳輸與交換,交換機(jī)對(duì)用戶信息的處理不再按比特進(jìn)行,而是根據(jù)其波長(zhǎng)來(lái)決定路由。
目前,全光網(wǎng)絡(luò)的發(fā)展仍處于初期階段,但它已顯示出了良好的發(fā)展前景。從發(fā)展趨勢(shì)上看,形成一個(gè)真正的、以 WDM技術(shù)與光交換技術(shù)為主的光網(wǎng)絡(luò)層,建立純粹的全光網(wǎng)絡(luò),消除電光瓶頸已成為未來(lái)光通信發(fā)展的必然趨勢(shì),更是未來(lái)信息網(wǎng)絡(luò)的核心,也是通信技術(shù)發(fā)展的最高級(jí)別,更是理想級(jí)別。
三、結(jié)語(yǔ)
光通信技術(shù)作為信息技術(shù)的重要支撐平臺(tái),在未來(lái)信息社會(huì)中將起到重要作用。雖然經(jīng)歷了全球光通信的“冬天”但今后光通信市場(chǎng)仍然將呈現(xiàn)上升趨勢(shì)。從現(xiàn)代通信的發(fā)展趨勢(shì)來(lái)看,光纖通信也將成為未來(lái)通信發(fā)展的主流。人們期望的真正的全光網(wǎng)絡(luò)的時(shí)代也會(huì)在不遠(yuǎn)的將來(lái)到來(lái)。
參考文獻(xiàn)
[1]辛化梅、李忠,論光纖通信技術(shù)的現(xiàn)狀及發(fā)展[J]. 山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,(04)
[論文摘要]光纖通信因其具有的損耗低、傳輸頻帶寬、容量大、體積小、重量輕、抗電磁干擾、不易串音等優(yōu)點(diǎn),備受業(yè)內(nèi)人士青睞,發(fā)展非常迅速。目前,光纖光纜已經(jīng)進(jìn)入了有線通信的各個(gè)領(lǐng)域,包括郵電通信、廣播通信、電力通信和軍用通信等領(lǐng)域。綜述我國(guó)光纖通信研究現(xiàn)狀及其發(fā)展。
近年來(lái),光纖通信技術(shù)得到了長(zhǎng)足的發(fā)展,新技術(shù)不斷涌現(xiàn),這大幅提高了通信能力,并使光纖通信的應(yīng)用范圍
不斷擴(kuò)大。
一、我國(guó)光纖光纜發(fā)展的現(xiàn)狀
(一)普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統(tǒng)的發(fā)展,光中繼距離和單一波長(zhǎng)信道容量增大,G.652.A光纖的性能還有可能進(jìn)一步優(yōu)化,表現(xiàn)在1550rim區(qū)的低衰減系數(shù)沒(méi)有得到充分的利用和光纖的最低衰減系數(shù)和零色散點(diǎn)不在同一區(qū)域。符合ITUTG.654規(guī)定的截止波長(zhǎng)位移單模光纖和符合G.653規(guī)定的色散位移單模光纖實(shí)現(xiàn)了這樣的改進(jìn)。
(二)核心網(wǎng)光纜
我國(guó)已在干線(包括國(guó)家干線、省內(nèi)干線和區(qū)內(nèi)干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G.652光纖和G.655光纖。G.653光纖雖然在我國(guó)曾經(jīng)采用過(guò),但今后不會(huì)再發(fā)展。G.654光纖因其不能很大幅度地增加光纖系統(tǒng)容量,它在我國(guó)的陸地光纜中沒(méi)有使用過(guò)。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經(jīng)使用過(guò)的緊套層絞式和骨架式結(jié)構(gòu),目前已停止使用。
(三)接入網(wǎng)光纜
接入網(wǎng)中的光纜距離短,分支多,分插頻繁,為了增加網(wǎng)的容量,通常是增加光纖芯數(shù)。特別是在市內(nèi)管道中,由于管道內(nèi)徑有限,在增加光纖芯數(shù)的同時(shí)增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網(wǎng)使用G.652普通單模光纖和G.652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復(fù)用,目前在我國(guó)已有少量的使用。
(四)室內(nèi)光纜
室內(nèi)光纜往往需要同時(shí)用于話音、數(shù)據(jù)和視頻信號(hào)的傳輸。并目還可能用于遙測(cè)與傳感器。國(guó)際電工委員會(huì)(IEC)在光纜分類中所指的室內(nèi)光纜,筆者認(rèn)為至少應(yīng)包括局內(nèi)光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機(jī)房?jī)?nèi),布放緊密有序和位置相對(duì)固定。綜合布線光纜布放在用戶端的室內(nèi),主要由用戶使用,因此對(duì)其易損性應(yīng)比局用光纜有更嚴(yán)格的考慮。
(五)電力線路中的通信光纜
光纖是介電質(zhì),光纜也可作成全介質(zhì),完全無(wú)金屬。這樣的全介質(zhì)光纜將是電力系統(tǒng)最理想的通信線路。用于電力線桿路敷設(shè)的全介質(zhì)光纜有兩種結(jié)構(gòu):即全介質(zhì)自承式(ADSS)結(jié)構(gòu)和用于架空地線上的纏繞式結(jié)構(gòu)。ADSS光纜因其可以單獨(dú)布放,適應(yīng)范圍廣,在當(dāng)前我國(guó)電力輸電系統(tǒng)改造中得到了廣泛的應(yīng)用。ADSS光纜在國(guó)內(nèi)的近期需求量較大,是目前的一種熱門(mén)產(chǎn)品。
二、光纖通信技術(shù)的發(fā)展趨勢(shì)
對(duì)光纖通信而言,超高速度、超大容量和超長(zhǎng)距離傳輸一直是人們追求的目標(biāo),而全光網(wǎng)絡(luò)也是人們不懈追求的夢(mèng)想。
(一)超大容量、超長(zhǎng)距離傳輸技術(shù)波分復(fù)用技術(shù)極大地提高了光纖傳輸系統(tǒng)的傳輸容量,在未來(lái)跨海光傳輸系統(tǒng)中有廣闊的應(yīng)用前景。近年來(lái)波分復(fù)用系統(tǒng)發(fā)展迅猛,目前1.6Tbit/的WDM系統(tǒng)已經(jīng)大量商用,同時(shí)全光傳輸距離也在大幅擴(kuò)展。提高傳輸容量的另一種途徑是采用光時(shí)分復(fù)用(OTDM)技術(shù),與WDM通過(guò)增加單根光纖中傳輸?shù)男诺罃?shù)來(lái)提高其傳輸容量不同,OTDM技術(shù)是通過(guò)提高單信道速率來(lái)提高傳輸容量,其實(shí)現(xiàn)的單信道最高速率達(dá)640Gbit/s。僅靠OTDM和WDM來(lái)提高光通信系統(tǒng)的容量畢竟有限,可以把多個(gè)OTDM信號(hào)進(jìn)行波分復(fù)用,從而大幅提高傳輸容量。偏振復(fù)用(PDM)技術(shù)可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號(hào)在超高速通信系統(tǒng)中占空較小,降低了對(duì)色散管理分布的要求,且RZ編碼方式對(duì)光纖的非線性和偏振模色散(PMD)的適應(yīng)能力較強(qiáng),因此現(xiàn)在的超大容量WDM/OTDM通信系統(tǒng)基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統(tǒng)需要解決的關(guān)鍵技術(shù)基本上都包括在OTDM和WDM通信系統(tǒng)的關(guān)鍵技術(shù)中。
(二)光孤子通信。光孤子是一種特殊的ps數(shù)量級(jí)的超短光脈沖,由于它在光纖的反常色散區(qū),群速度色散和非線性效應(yīng)相互平衡,因而經(jīng)過(guò)光纖長(zhǎng)距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實(shí)現(xiàn)長(zhǎng)距離無(wú)畸變的通信,在零誤碼的情況下信息傳遞可達(dá)萬(wàn)里之遙。
光孤子技術(shù)未來(lái)的前景是:在傳輸速度方面采用超長(zhǎng)距離的高速通信,時(shí)域和頻域的超短脈沖控制技術(shù)以及超短脈沖的產(chǎn)生和應(yīng)用技術(shù)使現(xiàn)行速率10~20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時(shí)、整形、再生技術(shù)和減少ASE,光學(xué)濾波使傳輸距離提高到100000km以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當(dāng)然實(shí)際的光孤子通信仍然存在許多技術(shù)難題,但目前已取得的突破性進(jìn)展使人們相信,光孤子通信在超長(zhǎng)距離、高速、大容量的全光通信中,尤其在海底光通信系統(tǒng)中,有著光明的發(fā)展前景。
(三)全光網(wǎng)絡(luò)。未來(lái)的高速通信網(wǎng)將是全光網(wǎng)。全光網(wǎng)是光纖通信技術(shù)發(fā)展的最高階段,也是理想階段。傳統(tǒng)的光網(wǎng)絡(luò)實(shí)現(xiàn)了節(jié)點(diǎn)間的全光化,但在網(wǎng)絡(luò)結(jié)點(diǎn)處仍采用電器件,限制了目前通信網(wǎng)干線總?cè)萘康倪M(jìn)一步提高,因此真正的全光網(wǎng)已成為一個(gè)非常重要的課題。
全光網(wǎng)絡(luò)以光節(jié)點(diǎn)代替電節(jié)點(diǎn),節(jié)點(diǎn)之間也是全光化,信息始終以光的形式進(jìn)行傳輸與交換,交換機(jī)對(duì)用戶信息的處理不再按比特進(jìn)行,而是根據(jù)其波長(zhǎng)來(lái)決定路由。
目前,全光網(wǎng)絡(luò)的發(fā)展仍處于初期階段,但它已顯示出了良好的發(fā)展前景。從發(fā)展趨勢(shì)上看,形成一個(gè)真正的、以WDM技術(shù)與光交換技術(shù)為主的光網(wǎng)絡(luò)層,建立純粹的全光網(wǎng)絡(luò),消除電光瓶頸已成為未來(lái)光通信發(fā)展的必然趨勢(shì),更是未來(lái)信息網(wǎng)絡(luò)的核心,也是通信技術(shù)發(fā)展的最高級(jí)別,更是理想級(jí)別。
三、結(jié)語(yǔ)
光通信技術(shù)作為信息技術(shù)的重要支撐平臺(tái),在未來(lái)信息社會(huì)中將起到重要作用。雖然經(jīng)歷了全球光通信的“冬天”但今后光通信市場(chǎng)仍然將呈現(xiàn)上升趨勢(shì)。從現(xiàn)代通信的發(fā)展趨勢(shì)來(lái)看,光纖通信也將成為未來(lái)通信發(fā)展的主流。人們期望的真正的全光網(wǎng)絡(luò)的時(shí)代也會(huì)在不遠(yuǎn)的將來(lái)到來(lái)。
參考文獻(xiàn):
[1]辛化梅、李忠,論光纖通信技術(shù)的現(xiàn)狀及發(fā)展[J].山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,(04)